Кибернетика в ссср: от лженауки до панацеи

Приложения

Приложения к организации и менеджменту были немедленно очевидны для Эшби. Одно из следствий состоит в том, что люди имеют ограниченную способность обрабатывать информацию, и за пределами этого предела важна организация между людьми.

Стаффорд Бир использовал этот анализ в своих работах по кибернетике управления . Бир определяет разнообразие как «общее количество возможных состояний системы или элемента системы». Пиво повторяет Закон необходимого разнообразия как «Разнообразие поглощает разнообразие». Проще говоря, логарифмическая мера разнообразия представляет собой минимальное количество вариантов выбора (путем двоичного дробления ), необходимое для разрешения неопределенности . Бир использовал это для распределения управленческих ресурсов, необходимых для поддержания жизнеспособности процесса.

Кибернетик Фрэнк Джордж рассказал о различных командах, которые соревнуются в таких играх, как футбол или регби, чтобы забить гол или попытаться. Можно сказать, что у выигрывающего шахматиста больше разнообразия, чем у проигравшего оппонента. Здесь подразумевается простой порядок . Ослабление и усиление разнообразия были главными темами в работе Стаффорда Бира в управлении (профессии контроля, как он его называл). Количество персонала, необходимого для ответа на телефонные звонки, контроля толпы или ухода за пациентами, является наглядным примером.

Применение естественных и аналоговых сигналов для анализа разнообразия требует оценки «способности различения» Эшби (см. Цитату выше). Учитывая эффект бабочки из динамической системы необходимо позаботиться , прежде чем количественные показатели могут быть получены. Небольшие количества, на которые можно не обращать внимания, могут иметь большие последствия. В своей книге «Создавая свободу» Стаффорд Бир обсуждает пациента в больнице с температурой, обозначающей лихорадку. Необходимо немедленно принять меры для изоляции пациента. Здесь никакое количество разнообразных записей средней температуры пациентов не обнаружит этот слабый сигнал, который может иметь большой эффект. Мониторинг требуется для отдельных лиц, что увеличивает разнообразие (см. Алгедонические предупреждения в модели жизнеспособной системы или VSM). Работа Бира в области управленческой кибернетики и VSM в значительной степени основана на разнообразии инженерии.

Другие приложения, использующие взгляд Эшби на подсчет состояний, включают анализ требований к цифровой полосе пропускания , избыточность и раздутость программного обеспечения , битовое представление типов данных и индексов , аналого-цифровое преобразование , границы конечных автоматов и сжатие данных . См. Также, например, возбужденное состояние , состояние (информатика) , шаблон состояния , состояние (элементы управления) и клеточный автомат . Необходимое разнообразие можно увидеть в теории алгоритмической информации Чейтина, где более длинная программа с большим разнообразием или конечный автомат производят несжимаемый результат с большим разнообразием или информационным содержанием.

Как правило, составляется описание требуемых входов и выходов, которое затем кодируется с минимально необходимым разнообразием. Отображение входных битов в выходные биты может затем дать оценку минимального количества аппаратных или программных компонентов, необходимых для обеспечения желаемого режима управления ; например, в компьютерном программном обеспечении или компьютерном оборудовании .

Разнообразие — это один из девяти требований, которые требует этический регулирующий орган .

Системный анализ и теория систем

Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке Началом науки «Теория принятия решений» следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение «бери больше, кидай дальше» неверен. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления «Теории принятия решений»:

· удорожание «цены ошибки». Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем «волевые» решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;

· ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что «опыт» не успевал накапливаться, и требовалось применение более развитого математического аппарата в проектировании;

· развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические методы.

Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.

В научно-технической литературе существует ряд термином, имеющих отношение к исследованию сложных систем. Наиболее общий термин «теория систем» относится к всевозможным аспектам исследования систем. Ее основными частями являются

· системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,

· кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

Здесь следует заметить, что понятие управления не совпадает с принятием решения. Условная граница между кибернетикой и системным анализом состоит в том, что первая изучает отдельные и строго формализованные процессы, а системный анализ — совокупность процессов и процедур.

Очень близкое к термину «системный анализ» понятие — «исследование операций«, которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий). Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной. Однако в зарубежной литературе термин «исследование операций» не является чисто математическим и приближается к термину «системный анализ». Широкая опора системного анализа на исследование операций приводит к таким его математизированным разделам, как

· постановка задач принятия решения;

· описание множества альтернатив;

· исследование многокритериальных задач;

· методы решения задач оптимизации;

· обработка экспертных оценок;

· работа с макромоделями системы.

Что такое кибернетика?

Кибернетика — это междисциплинарная наука об общих закономерностях получения, хранения, преобразования и передачи информации в сложных управляющих системах, будь то машины, живые организмы или общество. Это попытка ученых создать общую математическую теорию управления сложными системами, совместить на первый взгляд несовместимое и найти общность там, где ее не может быть.

Сло­во «ки­бер­не­ти­ка» впер­вые упот­ребил Пла­то­н в диа­ло­ге «За­ко­ны» (4 в. до н. э.) для обо­зна­че­ния «принципов управ­ле­ния людь­ми». В научный оборот термин «кибернетика» ввел французский физик и математик Андре-Мари Ампер, чьим именем мы измеряем силу электрического тока. В 1834 году в своем фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний» он определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага.

В том виде, в каком мы понимаем его сегодня, термин «кибернетика» ввел американский математик Норберт Винер в своей книге «Кибернетика, или Управление и связь в животном и в машине», опубликованной издательством MIT Press/Wiley and Sons в 1948 году. Он создал совершенно новую область исследований и совершенно новый взгляд на мир.

Уникальность его идей в том, что он показал: животные, как и машины, могут быть включены в более обширный класс объектов, отличительной особенностью которого является наличие систем управления.

Винера называют «отцом кибернетики». Однако большой вклад в развитие науки внесли и другие ученые — английский психиатр Уильям Эшби, американский нейрофизиолог Уоррен Маккалок, английский математик Алан Тьюринг, мексиканский физиолог Артуро Розенблют, советские математики Андрей Колмогоров и Виктор Глушков и другие.

Академик Виктор Глушков — ключевая фигура советской кибернетики

(Фото: ТАСС)

Основные принципы кибернетики

Как и в любой науке, у кибернетики есть свои законы и принципы. Основные из них — это принцип «черного ящика» и закон обратной связи.

Принцип «черного ящика» ввел английский психиатр, специалист по кибернетике и пионер в исследовании сложных систем Уильям Эшби. Этот принцип позволяет изучать поведение системы, то, как она реагирует на внешние воздействия, и в то же время абстрагироваться от ее внутреннего устройства. То есть кибернетики соглашаются с когнитивными ограничениями человека и невозможностью понять всех состояний системы, которые она может принимать прямо сейчас.

Закон обратной связи заключается в простом факте: если есть объект управления и субъект управления, то для выработки адекватных управляющих воздействий, имея информацию о состоянии объекта, субъект может принимать адекватное решение по его управлению. То есть манипулируя входными сигналами, мы можем наблюдать некий результат работы системы на выходе. При этом принципы и законы кибернетики одинаково применимы к управлению автомобилем, крупным предприятием, поведением толпы или бионическим протезом.

Одно из важнейших достижений кибернетики — разработка и широкое использование метода математического моделирования. Он позволяет проводить эксперименты не с реальными физическими моделями изучаемых объектов, а с их математическим описанием в виде компьютерных программ.

Литература[]

  • Винер Н. Кибернетика. — М.: Советское радио, 1968.
  • Винер Н. Некоторые моральные и технические последствия автоматизации.
  • Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
  • Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
  • Пекелис В.Д. (сост.) Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
  • Пекелис В.Д. (сост.) Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
  • Пекелис В.Д. (сост.) Кибернетика. Итоги развития, Наука, 1979, 200 с.
  • Пекелис В.Д. (сост.) Кибернетика. Современное состояние, Наука, 1980, 208 с.
  • Марков А. А. Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, 1964
  • Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971
  • Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, 1973
  • В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
  • Герович В. А. Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
  • Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
  • Грэхэм, Л. Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М.: Политиздат, 1991. — 480 с.

Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л. Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.

Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.

Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25000 экз.

  • Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, 1977.
  • Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
  • Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома ученых им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
  • Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.

Ученые-кибернетики

Управление кибернетическими механизмами регулирования было еще заложено в устройствах Ктесибия, жившего в 2-1 веках до нашей эры, и Герона Александрийского (около 1 в. до н.э.).

В средние века основы дисциплины применялись в изготовлении часовых и навигационных приборов или различных видов мельниц, где требовалось автоматическая регулировка работы устройств.

Основной рассвет систематизации кибернетики возник в век пара, относящий к технологическому периоду использования его в устройствах движения. Первый автоматический регулятор работы паровых двигателей запатентован Джеймсом Уаттом (1736-1819), они же, в свою очередь, дали большой толчок процессу индустриализации общества. Теоретические работы по кибернетическим системам тех лет относят к статье Джеймс Клерк Максвелла (1831-1879), посвященной регуляторам.
Фотография Джеймса Клерка Максвелла

Дальнейшее развитие дисциплина получила в трудах И.А. Вышнеградского (1832-1895). Сравнение естественных биологических систем и их реакций изучалось, в рамках кибернетики, И.П. Павловым (1849-1936) и П.К. Анохиным (1898-1974). Окончательное математическое обоснование наука получила в работах А. М. Тьюринга, А. Н. Колмогорова, Э. Л. Поста, В. А. Котельникова, А. Чёрча.

Современное понимание кибернетических систем и информатики было определено в рамках создания первой электронной вычислительной машины, прообраза компьютера, Нобертом Винтером, В. Бушем, Дж. фон Нейманом, У. Мак-Каллок и А. Розенблют. Итог работы этой группы относительно реальных технических и практических задач был опубликован Винтером в его книге «Кибернетика», изданной в 1948 году.
Ноберт Винтер

Для сохранения истины, хотелось бы вспомнить о том, что устройства обработки информации существовали еще до трудов Н. Винтера, только они не получали необходимого теоретического обоснования, требуемого в рамках научной дисциплины. В общность таких приборов входят различные арифмометры, механические вычислительные машины Чарльза Бэббриджа и станки Жозефа Мари Жакара, регуляторы множества изобретателей и созданные Конрадом Эрнст Отто Цузе релейные компьютеры.

Предмет изучения

Царица цифрового мира – наука кибернетика. Этим термином объединяется множество понятий, в основном связанных с интеллектуальной техникой, роботами и автоматизированными системами. Но, грубо говоря, его восприятие немного искажено. Изначально кибернетика это, в общем смысле, наука об управлении, которая относилась к искусству государственных деятелей в древней Греции.

В наше же время понятие трансформировалось, приобретя новый, более широкий смысл. Теперь этой научной дисциплиной называют систему получения, хранения и преобразования информации для сложных, основанных на математических принципах действия, систем. К которым безусловно относятся и современные компьютерные и автоматические комплексы обработки данных. Но и не только.
Фантастическая картинка-иллюстрация кибернетики

В ней анализируются взаимосвязи происходящих процессов в комплексе особей живого мира, включая растительный и микробиологический

Не обходит кибернетика вниманием и социально-экономические структуры. К каким относятся предприятия, группы людей, отрасли промышленности, политические объединения, страны.

Системы изучения

Главное, что изучает кибернетика – логическое взаимодействие отдельных элементов системы для получения конкретного результата. Примером можно привести управленческую структуру производственного предприятия, отдел ПТО.
Упрощенная схема взаимодействия ПТО и остальных элементов предприятия

Он – часть общей системы завода, его функциональная единица. У организации есть план выполнения, который разработан в соответствии с ресурсными возможностями и максимальной прибылью. Задача отдела выполнить документационную и проектную работу по подготовке всех этапов производства.

То есть, в рамках кибернетики, в ПТО приходит указание на выпуск такого-то количества продукции определенного вида. Отдел разрабатывает документы – планы и схемы самих изделий, акты на закупку исходных ресурсов, сметы. Результаты деятельности от этого логического элемента предприятия отправляются поставщикам, в производственные цеха, бухгалтерию. Вот пример функциональной системы, изучаемой кибернетикой, причем весьма далекий от технологии как таковой.

В описанном случае не нужно знать об оснащении цехов (токарные станки, пилорама или другого), форме прихода указаний от руководства (почта, электронное сообщение, курьер), или, к примеру, о валюте расчетов – это рассматривается в рамках других наук.

Элементы и их взаимодействие, исследуемые в рамках кибернетики

В общем виде, область рассмотрения этой наукой – взаимодействие частей системы. Каждая из которых довольно сложна и описывается различными дискретными математическими моделями, входящими в дисциплины теории игр, информации и алгоритмов.

Комплексный элемент структуры обрабатывает входной сигнал в зависимости от своего строения, которое моделируется в рамках кибернетики методами теории графов, кодирования, управляющих систем и комбинаторного анализа, преобразует его и выдает собственный результат, для последующего разбора или выполнения другой частью системы.

История кибернетики

Как уж говорилось, научная дисциплина кибернетика была описана еще в древней Греции, приблизительно в 4 веке до нашей эры. Сам термин пошел от греческого – искусство управления. От его фонетического звучания и возникло само название в латинском языке, которое впоследствии трансформировалось в «кибернетику». Но до сих пор используется и в более близком смысле по однокоренным словам – управлять, , по-русски – губернатор или же в виде названия «губерния». Описана дисциплина впервые была ученым Платоном в своем диалоге «Законы».
Бюст Платона Афинского

Окончательное введение в общность изучаемых наук было произведено А. Ампером в 1834 г., который в своей классификации упоминал кибернетику как «практику управления государством».

Современное понимание дисциплины было введено американским ученым Нобертом Винтером в 1947 году и касалось уже общности математических систем управляющих элементов.

Синтеграция

Одна из самых больших трудностей в управлении современной крупной организацией заключается в том, что многие вопросы слишком сложны даже для небольших групп. Критические знания часто рассредоточены среди значительного числа людей. Организации часто сталкиваются с выбором между 1) очень дорогостоящими и длительными собраниями больших групп или 2) принятием неверных решений, основанных на неадекватном понимании соответствующих факторов. Интеграция — это групповой метод, разработанный для решения этой головоломки.

Интеграция объединяет ряд кибернетических принципов с идеями Бакминстера Фуллера о тенсегрити . Первоначальный формат «командного единства » включал 30 человек, разделенных на 12 частично совпадающих команд, чтобы иметь дело с некоторыми широкими и изначально плохо определенными проблемами. Команды и роли в командах организованы таким образом, чтобы достичь математически оптимальной степени резонанса информации во всей группе. На практике интеграция обеспечивает замечательную степень общего понимания исходной проблемы. В интеграциях, предназначенных для разработки плана действий, этап реализации обычно очень быстрый и эффективный, вероятно, из-за общего понимания, достигнутого среди участников.

Notes

  1. ↑ Kevin Kelly, Out of Control: The New Biology of Machines, Social Systems and the Economic World (Boston, MA: Addison-Wesley, 1994, ISBN 0201483408).
  2. Louis Couffignal, Essai d’une définition générale de la cybernétique, The First International Congress on Cybernetics (Paris: Gauthier-Villars, 1958), 46-54.
  3. CYBCON discussion group 20. September 2007 18:15.
  4. Jean-Pierre Dupuy, «The autonomy of social reality: On the contribution of systems theory to the theory of society,» in Elias L. Khalil and Kenneth E. Boulding (eds.), Evolution, Order and Complexity (London, UK: Routledge, 1986, ISBN 9780203284902).
  5. Peter Harries-Jones, The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis, Canadian Journal of Political Science 21 (2): 431-433.
  6. Kenneth D. Bailey, Sociology and the New Systems Theory: Toward a Theoretical Synthesis (Albany, NY: Albany State Univ. of New York Press, 1994, ISBN 9780791417447), 163.
  7. Kent A. McClelland and Thomas J. Fararo (eds.), Purpose, Meaning, and Action: Control Systems Theories in Sociology (New York, NY: Palgrave Macmillan, 2006, ISBN 9781403967985).

Организационная кибернетика

Организационную кибернетику (OC) иногда отличают от кибернетики управления. Оба используют многие из одних и тех же терминов и опираются на некоторые из одних и тех же источников, но, как говорят, интерпретируют их в соответствии с несколько разными философиями системного мышления.

Организационная кибернетика изучает организационный дизайн, а также регулирование и саморегулирование организаций с точки зрения теории систем, также опираясь на Пиво и кибернетику, но также принимает во внимание социальный аспект. Расширяя принципы теории автономного агентства (AAT), теория культурного агентства (CAT) была сформулирована для генерации более высоких кибернетических порядков.. Исследователи в области экономики, государственного управления и политологии сосредотачивают внимание на изменениях в институтах, организации и механизмах социального управления на различных уровнях (субнациональном, национальном, европейском, международном) и в различных секторах (включая частный, получастный и государственный)

секторов; последний сектор выделен).

Исследователи в области экономики, государственного управления и политологии сосредотачивают внимание на изменениях в институтах, организации и механизмах социального управления на различных уровнях (субнациональном, национальном, европейском, международном) и в различных секторах (включая частный, получастный и государственный). секторов; последний сектор выделен).. Существует также обширная смежная область, также развивающаяся из общей теории систем и кибернетики через автопоэзис , биологической теории Умберто Матураны и Франсиско Варелы, влияющей на Никласа Лумана , и исследований, проведенных учеными теории сложности и систем .

Существует также обширная смежная область, также развивающаяся из общей теории систем и кибернетики через автопоэзис , биологической теории Умберто Матураны и Франсиско Варелы, влияющей на Никласа Лумана , и исследований, проведенных учеными теории сложности и систем .

Overview

The term cybernetics stems from the Greek Κυβερνήτης (kybernētēs, steersman, governor, pilot, or rudder—the same root as government).

Cybernetics is a broad field of study, but its essential goal is to understand and define the functions and processes of systems that have goals, and that participate in circular, causal chains that move from action to sensing to comparison with desired goal, and again to action. Studies in cybernetics provide a means for examining the design and function of any system, including social systems such as business management and organizational learning, including for the purpose of making them more efficient and effective.

Cybernetics was defined by Norbert Wiener, in his book of that title, as the study of control and communication in the animal and the machine. Stafford Beer called it the science of effective organization and Gordon Pask extended it to include information flows «in all media» from stars to brains. It includes the study of feedback, black boxes, and derived concepts such as communication and control in living organisms, machines, and organizations, including self-organization. Its focus is how anything (digital, mechanical or biological) processes information, reacts to information, and changes or can be changed to better accomplish the first two tasks

A more philosophical definition, suggested in 1956 by Louis Couffignal, one of the pioneers of cybernetics, characterizes cybernetics as «the art of ensuring the efficacy of action.» The most recent definition has been proposed by Louis Kauffman, President of the American Society for Cybernetics, «Cybernetics is the study of systems and processes that interact with themselves and produce themselves from themselves.»

Concepts studied by cyberneticists (or, as some prefer, cyberneticians) include, but are not limited to: Learning, cognition, adaption, social control, emergence, communication, efficiency, efficacy, and interconnectivity. These concepts are studied by other subjects such as engineering and biology, but in cybernetics these are removed from the context of the individual organism or device.

Other fields of study that have influenced or been influenced by cybernetics include game theory; system theory (a mathematical counterpart to cybernetics); psychology, especially neuropsychology, behavioral psychology, cognitive psychology; philosophy; anthropology and even architecture.

дальнейшее чтение

  • Бир, С. 1974, Конструирование свободы, Системы обучения Си-би-си, Торонто, 1974; и Джон Вили, Лондон и Нью-Йорк, 1975. Переведено на испанский и японский языки.
  • Бир, С. 1975, Платформа для перемен, Джон Вили, Лондон и Нью-Йорк. Печатается с исправлениями 1978 г.
  • Beer, S. 1979, The Heart of Enterprise, John Wiley, Лондон и Нью-Йорк. Печатается с исправлениями 1988 г.
  • Бир, С. 1981, Мозг фирмы; Второе издание (значительно расширенное), Джон Вили, Лондон и Нью-Йорк. Переиздано 1986, 1988 гг. Переведено на русский язык.
  • Бир, С. 1985, Диагностика системы для организаций; Джон Вили, Лондон и Нью-Йорк. Переведено на итальянский и японский языки. Перепечатано 1988, 1990, 1991 гг.
  • Конант, Р. 1981 Механизмы интеллекта: статьи и труды Росс Эшби Intersystems Publications ISBN  1-127-19770-3

References

  • Ashby, W. Ross. Introduction to Cybernetics. London, UK: Methuen, 1956.
  • Beer, Stafford. Designing Freedom. London, UK: John Wiley, 1974. ISBN 978-0471062219
  • Bluma, Lars. 2005. Norbert Wiener und die Entstehung der Kybernetik im Zweiten Weltkrieg. Münster, DE. Lit-Verl.
  • Heims, Steve J. John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death. Cambridge, MA: MIT Press, 1980. ISBN 978-0262081054
  • Heims, Steve J. 1993. Constructing a Social Science for Postwar America. The Cybernetics Group, 1946-1953. Cambridge, MA: MIT Press. ISBN 026258123X
  • Helvey, T.C. 1971. The Age of Information: An Interdisciplinary Survey of Cybernetics. Englewood Cliffs, NJ: Educational Technology Publications. ISBN 978-0877780083
  • Heylighen, Francis, and Joslyn C. «Cybernetics and Second Order Cybernetics» in R.A. Meyers (ed.). Encyclopedia of Physical Science & Technology, 3rd ed., Vol. 4. New York, NY: Academic Press, 2001. ISBN 978-0122274299
  • Ilgauds, Hans Joachim. Norbert Wiener. Leipzig, DE: Teubner, 1980.
  • Johnston, John. The Allure of Machinic Life: Cybernetics, Artificial Life, and the New AI. Cambridge, MA: MIT Press, 2008. ISBN 978-0262101264
  • Masani, P. Rustom. Norbert Wiener 1894-1964. Boston, MA: Wirkhäuser, 1990. ISBN 978-0817622466
  • Medina, Eden. Designing Freedom, Regulating a Nation: Socialist Cybernetics in Allende’s Chile. Journal of Latin American Studies. 38 (2006): 571-606.
  • Pangaro, Paul. Cybernetics—A Definition. Panaro, 1990. Retrieved May 12, 2020.
  • Pask, Gordon. Cybernetics. The Cybernetics Society, 1972. Retrieved May 12, 2020.
  • Patten, B.C., and E.P. Odum. The Cybernetic Nature of Ecosystems. The American Naturalist. 118 (1981): 886-895.
  • Plato, and W.R.M. Lamb (trans.). «Alcibiades 1.» In Plato, Volume 12. London, UK: Loeb Classical Library, 1927.
  • Wiener, Norbert. Cybernetics or Control and Communication in the Animal and the Machine. Cambridge, MA: The Technology Press, 1948.

Применение

Как научная дисциплина ее тезисы, математические решения и методы исследования применяются в изготовлении всей окружающей автоматики, включая такие ее виды: распознающие образы на изображениях, нейросистемы искусственного интеллекта, различные контролирующие устройства или их части, медицинское оборудование, вся цифровая техника, роботов, комплексы восприятия и синтеза голоса.

В сущности, в 21 веке сложно найти что-то в окружении человека, которое не содержит тех или иных управляющих элементов в зависимости от поступающих сигналов.
Кибернетика – основа замены человека во всех областях жизни

Медицинская кибернетика

Одной из ниш, которую плотно заняла научная дисциплина кибернетика, стала медицина. Средства контроля и автоматизации используются в миллионах относящихся к этой сфере деятельности приборов и устройств. Сюда входят системы предварительной поддержки жизнедеятельности организма человека – аппараты искусственного дыхания, фибрилляции, контролирующие его состояние приборы (различные анализаторы и индикаторы), а также вживляемые и устанавливаемые протезы.

Все эти ниши важны, но хотелось бы отдельно упомянуть о последних из перечисленных. Наиболее видимо и полно соответствуют понятию кибернетики различные современные протезы конечностей человека. Теперь управление ими осуществляется отдачей команд при помощи мыслей, а не устаревшими механическими способами.

Кроме того, созданы, пока экспериментальные, системы обратной связи, которые позволяют чувствовать искусственную руку или ногу как реальное продолжение человеческого тела с восприятием информации от различных датчиков, размещенных на протезе.
Швейцарский бионический протез с обратной связью по чувствительности и управлению мозговыми волнами

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector